
Chapter 7. Endogeneity and Instrumental Variables�

This chapter covers endogeniety and the two-stage least squares estimation. Related materials

can be found in Chapter 3 of Hayashi (2000), Chapter 4 of Cameron and Trivedi (2005), Chapter

9 of Hansen (2007), and Chapter 5 of Wooldrige (2010).

1 Endogeneity

In linear regression,

yi = x
0
i� + ui; (1)

where yi is the dependent variable, xi 2 Rk is a vector of explanatory variables, � contains the
unknown coe¢ cients, ui is the unobservable component of yi, and E[uijxi] = 0. A regression is

designed to carry out statistical inferences on causal e¤ects of xi on yi. But in practice, it often

happens that xi and ui are correlated. When E[xiui] 6= 0, there is endogeneity. In this case, the
LSE will be asymptotically biased. The analysis of data with endogenous regressors is arguably

the main contribution of econometrics to statistical science. There are �ve commonly encountered

situations where endogeneity exists.

(i) Simultaneous causality. For example, does computer usage increase the income? Do Cigarette
taxes reduce smoking? Does putting criminals in jail reduce crime? Example 1 below shows

the simultaneous causality induced by a system of equations. Solutions to this problem

include using instrumental variables (IVs),1 and designing and implementing a randomizing

controlled experiment in which the reverse causality channel is nulli�ed (see references cited

in the Introduction). The �rst solution will be discussed in this chapter.

(ii) Omitted variables. For example, in the model on returns to schooling, ability is an important
variable that is correlated to years of education, but is not observable so is included in the error

term. Solutions to this problem include using IVs, using panel data (see, Chamberlain (1984),

Arellano and Honoré (2001) and Hsiao (2003) for an introduction to panel data analysis), and

using randomizing controlled experiments.

(iii) Errors in variables. This term refers to the phenomenon that an otherwise exogenous regressor
becomes endogenous when measured with error. For example, in the returns-to-schooling

�Email: pingyu@hku.hk
1See Stock and Trebbi (2003) for who invented instrumental variable regression.
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model, the records for years of education are fraught with errors owing to lack of recall,

typographical mistakes, or other reasons. The basic solution to this problem is to use IVs

(e.g., exogenous determinants of the error ridden explanatory variables, or multiple indicators

of the same outcome). See Bound et al. (2001) for an introduction to measurement errors in

survey data.

(iv) Sample selection. For example, in the analysis of returns to schooling, only wages for employed
workers are available, but we want to know the e¤ect of education for the general population.

We will discuss how to handle such an endogeneity problem in Chapter 9.

(v) Functional form misspeci�cation. E[yjx] may not be linear in x. This problem can be handled

by nonparametric methods. See related chapters in Handbook of Econometrics, Härdle and

Linton (1994) (or its extended version Härdle (1990)), Chen (2007) and Ichimura and Todd

(2007), for an introduction.

Example 1 (Simultaneous Causality) Wright (1928) considered estimating the elasticity of
butter demand, which is critical in the policy decision on the tari¤ of butter. In the economic

language, he considered a linear Marshallian stochastic demand/supply system. De�ne pi = lnPi

and qi = lnQi, and the demand equation is

qi = �0 + �1pi + ui; (2)

where ui represents other factors besides price that a¤ect demand, such as income and consumer

taste. But the supply equation is in the same form as (2):

qi = �0 + �1pi + vi; (3)

where vi represents the factors that a¤ect supply, such as weather conditions (see, e.g., Angrist et

al. (2000)), factor prices, and union status. So pi and qi are determined "within" the model, and

they are endogenous. Rigorously, note that

pi =
�0 � �0
�1 � �1

+
vi � ui
�1 � �1

;

qi =
�1�0 � �0�1
�1 � �1

+
�1vi � �1ui
�1 � �1

;

by solving two simultaneous equations (2) and (3). Suppose Cov(ui; vi) = 0, then

Cov(pi; ui) = �
V ar(ui)

�1 � �1
; Cov(pi; vi) =

V ar(vi)

�1 � �1
;

which are not zero. If �1 < 0 and �1 > 0, then Cov(pi; ui) > 0 and Cov(pi; vi) < 0. This is

intuitively correct: if a demand (supply) shifter shifts the demand (supply) curve right or ui > 0

(vi > 0), the price increases (decreases).
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If we regress qi on pi, then the slope estimator converges to

Cov(pi;qi)
V ar(pi)

= �1 +
Cov(pi;ui)
V ar(pi)

= �1 +
Cov(pi;vi)
V ar(pi)

why?
= �1V ar(vi)+�1V ar(ui)

V ar(vi)+V ar(ui)
2 (�1; �1);

so the LSE is neither �1 nor �1, but a weighted average of them. Such a bias is called the simul-

taneous equations bias. The LSE cannot consistently estimate �1 or �1 because both curves are

shifted by other factors besides price, and we cannot tell from data whether the change in price and

quantity is due to a demand shift or a supply shift. If ui = 0 (that is, the demand curve stays still),

then the equilibrium prices and quantities will trace out the demand curve and the LSE is consistent

to �1. Figure 1 illustrates the discussion above intuitively.

From the discussion above, pi has one part correlated with ui
�
� ui
�1��1

�
and one part uncorre-

lated with ui
�

vi
�1��1

�
. If we can isolate the second part, then we can focus on those variations in

pi that are uncorrelated with ui and disregard the variations in pi that bias the LSE. Take a supply

shifter zi (e.g., weather), which can be considered to be uncorrelated with the demand shifter ui such

as consumer�s tastes; then

Cov(zi; ui) = 0, and Cov(zi; pi) 6= 0.

So

Cov(zi; qi) = �1 � Cov(zi; pi);

and

�1 =
Cov(zi; qi)

Cov(zi; pi)
:

A natural estimator is b�1 = dCov(zi; qi)dCov(zi; pi) ;
which is the IV estimator. Another method to estimate �1 as suggested above is to run regression

qi = �0 + �1bpi + eui;
where bpi is the predicted value from the following regression:

pi = 0 + 1zi + �i;

and eui = �1 (pi � bpi) + ui. It is easy to show that Cov(bpi; eui) = 0, so the estimation is consistent.
Such a procedure is called two-stage least squares (2SLS) for an obvious reason. In this case, the

IV estimator and the 2SLS estimator are numerically equivalent as shown in Exercise 9 below. �

Example 2 (Omitted Variables) Mundlak (1961) considered the production function estima-
tion, where the error term includes factors that are observable to the economic agent under study

but unobservable to the econometrician, and endogeneity arises when regressors are decisions made
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Figure 1: Endogeneity and Identi�cation by Instrument Variables

by the agent on the basis of such factors.

Suppose that a farmer is producing a product using the Cobb-Douglas technology:

Qi = Ai � (Li)�1 � exp(�i), 0 < �1 < 1; (4)

where Qi is the output of the ith farm, Li is a variable input (labor), Ai represents an input that

is �xed over time (e.g., soil quality), and �i represents a stochastic input (e.g., rainfall) which is

not under the farmer�s control. We shall assume that the farmer knows the product price p and

input price w, which do not depend on his decisions, and that he knows Ai but econometricians do

not. The factor input decision is made before knowing �i, and so Li is chosen to maximize expected

pro�ts. The factor demand equation is

Li =

�
w

p

� 1
�1�1

(AiB�1)
1

1��1 ; (5)

so a better farm induces more labors on it. We assume that (Ai; �i) is i.i.d. over farms, and Ai
is independent of �i for each i. Therefore, B = E[exp(�i)] is the same for all i, and the level of

output the farm expects when it chooses Li is Ai � (Li)�1 �B.
Taking logarithm on both sides of (4), we have a log-linear production function:

logQi = logAi + �1 � log(Li) + �i;

where logAi is an omitted variable. Equivalently, each farm has a di¤erent intercept. The LSE of

�1 will converge to
Cov(logQi;log(Li))

V ar(log(Li))
= �1+

Cov(logAi;log(Li))
V ar(log(Li))

, which is not �1 since there is correlation

between logAi and log(Li) as shown in (5). Figure 2 shows the e¤ect of logAi on �1 by drawing

E [logQj logL; logA] for two farms. In Figure 2, the OLS regression line passes through points AB
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with slope logQ1�logQ2logL1�logL2 , but the true �1 is
D�C

logL1�logL2 . Their di¤erence is
A�D

logL1�logL2 =
logA1�logA2
logL1�logL2 ,

which is the bias introduced by the endogeneity of logAi.

Rigorously, let ui = log(Ai) � E[log(Ai)], and �0 = E[log(Ai)]; then E[ui] = 0 and Ai =

exp (�0 + ui). (4) and (5) can be written as

logQi = �0 + �1 � log(Li) + �i + ui; (6)

logLi = �0 +
1

1� �1
ui; (7)

where �0 =
1

1��1

�
�0 + log(B�1)� log

�
w
p

��
is a constant for all farms. Now, it is obvious that

logLi is correlated with (�i + ui). Thus, the LSE of �1 in the estimation of log-linear production

function confounds the contribution of ui with the contribution of labor. Actually,

b�1;OLS p�! 1;

because substituting (7) into (6), we get

logQi = �0 � (1� �1)�0 + 1 � log(Li) + �i:

The lesson from this example is that a variable chosen by the agent taking into account some

information unobservable to the econometrician can induce endogeneity. �

Exercise 1 Suppose the farmer could observe �i as well as Ai before deciding on labor input,
how does the demand equation for labor (5) change? Show that logQi and log(Li) are perfectly

correlated.

Example 3 (Errors in Variables) The cross-section version of M. Friedman�s (1957) Perma-
nent Income Hypothesis can be formulated as an errors-in-variables problem. The hypothesis states

that "permanent consumption" C�i for household i is proportional to "permanent income" Y
�
i :

C�i = kY
�
i with 0 < k < 1.

Assume both measured consumption Ci and income Yi are contaminated by measurement error:

Ci = C
�
i + ci and Yi = Y

�
i + yi,

where ci and yi are independent of C�i and Y
�
i and are independent of each other; then

Ci = kYi + ui with ui = ci � kyi: (8)

It is easy to see that E [Yiui] = �kE
�
y2i
�
< 0, so the LSE of k converges to E[YiCi]

E[Y 2i ]
=

kE
h
(Y �i )

2
i

E
h
(Y �i )

2
i
+E[y2i ]

<

k, that is, the OLS using measured data underestimates k. Taking expectation on both sides of (8),

5



logQ
2

logQ
1

logL
2

logL
1 logL

lo
gQ

A

B C

D

Figure 2: E¤ect of Soil Quality on Labor Input

we have E[Ci] = kE[Yi]+E[ui]. So z = 1 is a valid IV if E[yi] = E[ci] = 0 and E [Y �i ] = E[Yi] 6= 0..
The IV estimation using z as the instrument is Ci

Y i
, which is how Friedman estimated k.

Actually, measurement errors are embodied in regression analysis from the beginning. Galton

(1889) analyzed the relationship between the height of sons and the height of fathers. Speci�cally,

suppose the true model is

Si = �+ �Fi + ui; (9)

where Si and Fi are the heights of sons and fathers, respectively. Even if Si should perfectly match

Fi (that is, �0 = 0, �0 = 1, and ui = 0), the OLS estimator would be smaller than 1 if there are

environmental factors or measurement errors that a¤ect Si. Suppose Si = Fi + fi, where fi is the

environmental factor; then our regression becomes

Si = �+ � (Si � fi) + ui = �+ �Si + ui � �fi;

where the regressor Si should be interpreted as the mismeasured Fi in (9). The OLS estimator of

� will converge to Cov(�0+�0Si+ui��0fi;Si)
V ar(Si)

= V ar(Fi)
V ar(Fi)+V ar(fi)

< 1, where V ar(Fi)
V ar(Fi)+V ar(fi)

� � is called
the reliability coe¢ cient or Heritability coe¢ cient. In Galton�s analysis, this coe¢ cient is about

2=3. Similarly, the OLS estimator of � converges to (1� �)E[Fi] 6= 0 (why?). The regression line
and the true line intersect at E[Fi], and both are shown in Figure 3. Galton wrote "the average

regression of the o¤spring is a constant fraction of their respective mid-parental deviations" and

termed this phenomenon as "regression towards mediocrity".
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Finally, note from Exercise 2 in Chapter 5 that measure errors in yi will not a¤ect the consis-

tency of the LSE but may a¤ect its asymptotic distribution. �

2 Instrumental Variables

We call (1) the structural equation or primary equation. In matrix notation, it can be written as

y = X� + u: (10)

Any solution to the problem of endogeneity requires additional information which we call instru-

mental variables (or simply instruments). The l � 1 random vector zi is an instrument for (1) if

E [ziui] = 0. This condition cannot be tested in practice since ui cannot be observed.

In a typical set-up, some regressors in xi will be uncorrelated with ui (for example, at least the

intercept). Thus we make the partition

xi =

 
x1i

x2i

!
k1

k2
; (11)

where E [x1iui] = 0 yet E [x2iui] 6= 0. We call x1i exogenous and x2i endogenous. By the above

de�nition, x1i is an instrumental variable for (1), so should be included in zi, giving the partition

zi =

 
x1i

z2i

!
k1

l2
; (12)

where x1i = z1i are the included exogenous variables, and z2i are the excluded exogenous variables.
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In other words, z2i are variables which could be included in the equation for yi (in the sense that

they are uncorrelated with ui) yet can be excluded, as they would have true zero coe¢ cients in the

equation which means that certain directions of causation are ruled out a priori.

The model is just-identi�ed if l = k (i.e., if l2 = k2) and over-identi�ed if l > k (i.e., if l2 = k2).

We have noted that any solution to the problem of endogeneity requires instruments. This does

not mean that valid instruments actually exist.

3 Reduced Form

The reduced form relationship between the variables or "regressors" xi and the instruments zi is

found by linear projection. Let

� = E
�
ziz

0
i

��1
E
�
zix

0
i

�
be the l � k matrix of coe¢ cients from a projection of xi on zi, and de�ne

vi = xi � �0zi

as the projection error. Then the reduced form linear relationship between xi and zi is the instru-

mental equation

xi = �
0zi + vi: (13)

In matrix notation,

X = Z�+V; (14)

where V is a n � k matrix. By construction, E [ziv0i] = 0, so (13) is a projection and can be

estimated by OLS:

X = Zb�+ bV;b� =
�
Z0Z

��1 �
Z0X

�
:

Substituting (14) into (10), we �nd

y = (Z�+V)� + u = Z�+ e (15)

where � = �� and e = V� + u. Observe that

E [ze] = E
�
zv0
�
� + E [zu] = 0. (16)

Thus (15) is a projection equation and may be estimated by OLS. This is

y = Zb�+ be;b� =
�
Z0Z

��1 �
Z0y
�
:
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The equation (15) is the reduced form for y. (14) and (15) together are the reduced form equations

for the system

y = Z�+ e;

X = Z�+V:

As we showed above, OLS yields the reduced-form estimates
�b�; b��.

The system of equations

y = X� + u;

X = Z�+V;

are called triangular simultaneous equations because the second part of equations do not depend

on y. This system of equations rules out full simultaneity and includes the same information as an

"incomplete" linear system

y = X� + u; E
�
Z0u

�
= 0:

However, in a nonlinear system, they are not equivalent in general.

Exercise 2 (i) Show that E [viui] 6= 0. (ii) Suppose k = k2 = l = 1, and all variables are

demeaned. Can the correlation between ui and vi be 1?

Exercise 3 Suppose y = X� + u and X = Z� + V, where E[ujZ] = 0 and E[VjZ] = 0 but

E[V0u] 6= 0. Derive the plim of b�OLS. When � = 0, what will plim�b�OLS� degenerate to?
Exercise 4 In the reduced form between the regressors xi and instruments zi (13), the parameter

� is de�ned by the population moment condition

E
�
ziv

0
i

�
= 0:

Show that the MoM estimator for � is b� = (Z0Z)�1 Z0X.
4 Identi�cation

The structural parameter � in triangular simultaneous equations relates to (�;�) by � = ��. This

relation can be derived directly by using the orthogonal condition E [zi (yi � x0i�)] = 0 which is

equivalent to

E [ziyi] = E
�
zix

0
i

�
�: (17)
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Multiplying each side by an invertible matrix E [ziz0i]
�1, we have � = ��. The parameter is

identi�ed, meaning that it can be uniquely recovered from the reduced form, if the rank condition2

rank (�) = k (18)

holds. This condition can be tested in practice (think about the case k = 1). If rank(E [ziz0i]) = l

(this is trivial), and rank(E [zix0i]) = k (this is crucial), this condition is satis�ed. Assume that

(18) holds. If l = k, then � = ��1�. If l > k, then for any A > 0, � = (�0A�)�1 �0A�. If (18)

is not satis�ed, then � cannot be uniquely recovered from (�;�). Note that a necessary (although

not su¢ cient) condition for (18) is the order condition l � k. Since Z and X have the common

variables X1, we can rewrite some of the expressions. Using (11) and (12) to make the matrix

partitions Z = [Z1;Z2] and X = [Z1;X2], we can partition � as

� =

 
�11 �12

�21 �22

!
=

 
I �12

0 �22

!
k1 k2

k1

l2
:

(14) can be rewritten as

X1 = Z1

X2 = Z1�12 + Z2�22 +V2:

� is identi�ed if rank(�) = k, which is true if and only if rank(�22) = k2 (by the upper-diagonal

structure of �). Thus the key to identi�cation of the model rests on the l2 � k2 matrix �22.

Exercise 5 In the structural model

y = X� + u;

X = Z�+V;

with � l � k, l � k, we claim that � is identi�ed (can be recovered from the reduced form) if

rank(�) = k. Explain why this is true. That is, show that if rank(�) < k then � cannot be

identi�ed.

Example 4 (What Variable Is Quali�ed to Be An IV?) It is often suggested to select an in-
strumental variable that is

(i) uncorrelated with u; (ii) correlated with endogenous variables. (19)

(i) is the instrument exogeneity condition, which says that the instruments can correlate with the

dependent variable only indirectly through the endogenous variable. (ii) intends to repeat the in-
2The precise condition should be rank([�;�]) =rank(�) = k: The �rst equality guarantees the existence, and the

second guarantees the uniqueness. Usually, the existence is assumed, so we only write out the second equality.
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strument relevance condition which says that X1 and the predicted value of X2 from the regression

of X2 on Z and X1 are not perfectly multicollinear; in other words, there must be "enough" extra

variation in bx2 that can not be explained by x1. Such a condition is required in the second stage
regression. Scrutinizing (19) is important to practioners.

Check the following example with only one endogenous variable:

y = x1�1 + x2�2 + u;

E[x1u] = 0; E[x2u] 6= 0; Cov(x1; x2) 6= 0:

One may suggest the following instrument for x2, say, z = x1 + ", where " is some computer-

generated random variable independent of the system. Now, E [zu] = 0 and Cov (z; x2) = Cov(x1; x2) 6=
0 . It seems that z is a valid instrument, but intuition tells us that it is NOT, since it includes the

same useful information as x1. What is missing? We know the right conditions for a random

variable to be a valid instrument are

E [zu] = 0; (20)

x2 = x11 + z2 + v with 2 6= 0:

In this example, x2 = x11 + z2 + v = x1 (1 + 2) + ("2 + v), 2 is not identi�ed!

The arguments above indicate that (19) is not su¢ cient. Is it necessary? The answer is still

NO! The question can be formulated as follows: in (20), can we �nd some z such that

2 6= 0 but Cov(z; x2) = 0?

Observe that Cov(z; x2) = Cov(z; x11+z2+v) = Cov(z; x1)1+V ar(z)2, so if
Cov(z;x1)
V ar(z) = �2

1
,

this could happen. That is, although z is not correlated with x2, it is correlated with x1, and x1 is

correlated with x2. In mathematical language, Cov(z; x1) 6= 0, 1 6= 0. In such a case, z is related
to x2 only indirectly through x1. If we assume Cov(z; x1) = 0, or 1 = 0, then the assumption

Cov(z; x2) 6= 0 is the right condition for z to be a valid instrument. So the right condition should
be that z is partially correlated with x2 after netting out the e¤ect of x1.

In general, a necessary condition for a set of quali�ed instruments is that at least one instrument

appears in each of the �rst-stage regression. Here "appear" means the coe¢ cient of the variable is

not zero. When k = `, each instrument must appear in at least one endogenous regression.

Given the cautions above, how to select instruments? Generally speaking, good instruments

are not selected based on mathematics, but based on economic theory. For example, Angrist and

Krueger (1991) propose using quarter of birth as an IV for education in the analysis of returns to

schooling because of a mechanical interaction between compulsory school attendance laws and age

at school entry; Card (1995) uses college proximity3 as an instrument to identify the returns to

schooling, noting that living close to a college during childhood may induce some children to go to

3Parental education is another popular IV to identify the returns to schooling.
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college but is unlikely to directly a¤ect the wages earned in their adulthood; Acemoglu et al. (2001)

use the mortality rates (of soldiers, bishops, and sailors) as an IV to estimate the e¤ect of property

rights and institutions on economic development. �

Exercise 6 Consider the linear demand and supply system:

Demand: qi = �0 + �1pi + �2yi + ui;

Supply: qi = �0 + �1pi + �2wi + vi:

where income (y) and wage (w) are determined outside the market. In this model, are the parameters

identi�ed?

5 Estimation: Two-Stage Least Squares

If l = k, then the moment condition is E [zi (yi � x0i�)] = 0, and the corresponding IV estimator is
a MoM estimator: b�IV = �Z0X��1 �Z0y� :
Another interpretation stems from the fact that since � = ��1�, we can construct the Indirect

Least Squares (ILS) estimator of Haavelmo (1943):

b� = b��1b� = ��Z0Z��1 Z0X��1 ��Z0Z��1 Z0y� = �Z0X��1 �Z0y� :
Exercise 7 In the linear model,

yi = x0i� + ui;

E[uijxi] = 0:

Suppose �2i = E[u2i jxi] is known. Show that the GLS estimator of � with the weight matrix

diag
�
��21 ; � � � ; ��2n

	
can be written as an IV estimator using some instrument zi. (Find an ex-

pression for zi.)

Exercise 8 Suppose y = x� + u, x = "+ ��1u, and z = v+ ", where "; u and v are independent.
Find the probability limits of b�OLS and b�IV . Show that if  = 0; 1nPn

i=1 vi"i = 0, and �
2
u is large,

the two probability limits are the same.

When l > k, the two-stage least squares (2SLS) estimator can be used. It was originally

proposed by Theil (1953) and Basmann (1957), and is the classic estimator for linear equations

with instruments. Given any k instruments out of z or its linear combinations can be used to

identify �, the 2SLS chooses those that are most highly (linearly) correlated with x. Namely, it is

the sample analog of the following implication of E[zu] = 0:

0 = E [E� [xjz]u] = E
�
�0zu

�
= E

�
�0z(y � x0�)

�
; (21)
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where E� [xjz] is the linear projection of x on z. Replacing population expectations with sample
averages in (21) yields b�2SLS = �bX0X��1 bX0y;
where bX = Zb� � PX with b� = (Z0Z)�1 (Z0X) and P = PZ = Z (Z0Z)�1 Z0. In other words, the
2SLS estimator is an IV estimator with the IVs being bxi.
Exercise 9 Show that if l = k, then b�2SLS = b�IV , that is, no matter we use bxi or zi as IVs, we
get the same results.

The source of the name "two-stage" is from Theil (1953)�s formulation of 2SLS. From (16),

0 = E
�
E�[xjz](u+ v0�)

�
= E

��
�0z
�
(y � z0��)

�
;

i.e., � is the least squares regression coe¢ cients of the regression of y on �tted values of �0z, so

this method is often called the �tted-value method. The sample analogue is the following two-step

procedure:

� First, regress X on Z to get bX:
� Second, regress y on bX to get

b�2SLS = �bX0 bX��1 bX0y = �X0PX��1 �X0Py� : (22)

Exercise 10 Show that b�2SLS satis�es
�
S� b�e1e01�

 
1

�b�2SLS
!
= 0;

where e1 = (1; 0; � � � ; 0)0 is the �rst (k + 1) � 1 unit vector, S = (y;X)0P(y;X), and b� =

(1;�b�02SLS)S(1;�b�02SLS)0. Further show that when the model is just identi�ed, b� = 0 and S is

singular.

Another closely related formulation of 2SLS is Basmann (1957)�s version of 2SLS. It is motivated

by observing that E[zu] = 0 implies

0 = E� [ujz] = E� [yjz]� E�[xjz]0�; (23)

so b�2SLS = �bX0 bX��1 bX0by:
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Equivalently, b�2SLS = argmin� (y �X�)0PZ (y �X�), which is a GLS estimator. Yet another
algebraically equivalent formulation of 2SLS is the control function formulation of Telser (1964)4: b�2SLSb�2SLS

!
=
�cW0cW��1 cW0y; (24)

where cW = [X; bV]. This construction exploits another implication of E[zu] = 0:
E�[ujx; z] = E�[uj�0z+ v; z] = E� [ujv; z] = E�[ujv] � v0�

for some coe¢ cient vector �, where the third equality follows from the orthogonality of both error

terms u and v with z. Thus, this particular linear combination of the �rst-stage errors v is a

function that controls for the endogeneity of the regressors x. Basmann (1957)�s formulation (23)

and the control function formulation of 2SLS can be extended to more general (especially nonlinear)

models discussed in Chapter 1, but the �tted-value method seems hard to extend; see Blundell and

Powell (2003).

Exercise 11 (i) Show that E� [ujv; z] = E�[ujv] if E[zu] = 0 and E[zv0] = 0. (ii) Show that (24)
generates the same formula of b�2SLS as (22).
Exercise 12 Take the linear model

yi = xi� + ui; E[uijxi] = 0;

where xi and � are scalars.

(i) Show that E[xiui] = 0 and E[x2iui] = 0. Is zi = (xi; x
2
i )
0 a valid instrumental variable for

estimation of �?

(ii) De�ne the 2SLS estimator of �, using zi as an instrument for xi. How does this di¤er from
OLS?

Exercise 13 Suppose y = m(x) + u, E[xu] 6= 0 and E[zu] = 0.

(i) Derive the probability limit of b�2SLS.
(ii) Show that b�2SLS is not the best linear predictor of m(x) in the sense that

plim
�b�2SLS� 6= argmin

�
E
h�
m(x)� x0�

�2i
:

It is useful to scrutinize the projection bX. Recall that Z = [X1;Z2] and X = [X1;X2], so

bX = [PX1;PX2] = [X1;PX2] =
h
X1; bX2i ;

4 It is di¢ cult to locate a de�nitive reference to the control function version of 2SLS. Dhrymes (1970, equation
4.3.57) formally discussed this formulation. Heckman (1978) attributed it to Telser (1964).
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since X1 lies in the span of X. Thus in the second stage, we regress y on X1 and bX2. So only the
endogenous variables X2 are replaced by their �tted values:

bX2 = Z1b�12 + Z2b�22:
Note that as a linear combination of z, bx2 is not correlated with u and it is often interpreted as the
part of x2 that is uncorrelated with u.

Exercise 14 In the structural model

y = X1�1 +X2�2 + u;

X2 = X1�12 + Z2�22 +V;

(i) show that b�2;2SLS = �X02PeZ2X2��1X02PeZ2y, where eZ2 =MX1Z2; (ii) Given that x1i are the

included exogenous variables with E[x1iui] = 0, does X01bu equal 0? where bu = y �Xb�2SLS.
Example 5 (Wald Estimator) The Wald estimator is a special IV estimator when the single

instrument z is binary. Suppose we have the model

y = �0 + �1x+ u, Cov(x; u) 6= 0;
x = 0 + 1z + u:

The identi�cation conditions are

Cov(z; x) 6= 0; Cov(z; u) = 0:5 (25)

From Exercise 14, the IV estimator is

b�1 =
nP
i=1
(zi � z) (yi � y)

nP
i=1
(zi � z) (xi � x)

:

If z is binary that takes the value 1 for n1 of the n observations and 0 for the remaining n0
observations, then b�1 is equivalent to

b�Wald =
y1 � y0
x1 � x0

;

where y1 is mean of y across the n1 observations with z = 1, y0 is the mean of y across the n0
5 In view of Example 4, why is Cov(z; x) 6= 0 the right identi�cation condition? This is because x1 = 1 in this

example, and Cov(z; x) 6= 0 is not only necessary but also su¢ cient for identi�cation.
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observations with z = 0, and analogously for x. Why?

b�1 =

nP
i=1
yizi � yzi

nP
i=1
xizi � xzi

=

P
zi=1

(yizi � yzi) +
P
zi=0

(yizi � yzi)P
zi=1

(xizi � xzi) +
P
zi=0

(xizi � xzi)

=

P
zi=1

(yizi � yzi) =n1P
zi=1

(xizi � xzi) =n1
=
y1 � y
x1 � x

=
y1 � y0
x1 � x0

,

where the last equality is from y = n1y1+n0y0
n . This estimator is called the Wald estimator �rst

proposed in Wald (1940) and converges in probability to

E [yjz = 1]� E [yjz = 0]
E [xjz = 1]� E [xjz = 0] : (26)

A simple interpretation of this estimator is to take the e¤ect of z on y and divide by the e¤ect of

z on x. Figure 4 provides some intuition for the identi�cation scheme of the Wald estimator in

the linear demand/supply system - the shift in p by z devided by the shift in q by z is indeed a

reasonable slope estimator of the demand curve.

The Wald estimator has many applications. In Card (1995), y is the log weekly wage, x is years

of schooling S, and z is a dummy which equals 1 if born in the neighborhood of an university and

0 otherwise. In studying the returns to schooling in China, someone ever used a dummy indicator

of living through the Cultural Revolution or not as z. Angrist and Evans (1998) use the dummy

of whether the sexes of the �rst two children are the same, which indicates the parental preferences

for a mixed sibling-sex composition, (and also a twin second birth) as the instrument to study the

e¤ect of a third child on employment, hours worked and labor income. Hearst et al. (1986) and

Angrist (1990) use the Vietnam era draft lottery as an instrument for veteran status to identify the

e¤ects of mandatory military conscription on subsequent civilian mortality and earnings. Imbens et

al. (2001) use "winning a prize in the lottery" as an instrument to identify the e¤ects of unearned

income on subsequent labor supply, earnings, savings and consumption behavior. �

Exercise 15 Consider the single equation model

yi = xi� + ui;

where yi and xi are both real-valued. Let b� denote the IV estimator of � using as instrument a

dummy variable di (takes only the values 0 and 1). Find a simple expression for the IV estimator

in this context and derive its probability limit. What is the di¤erence between this probability limit

and the probability limit of the Wald estimator?
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Figure 4: Intuition for the Wald Estimator in the Linear Demand/Supply System

Exercise 16 (*) Suppose

y = �0 + �1x+ u, Cov(x; u) 6= 0;
x = 0 + 1z + v;E[ujz] = 0; E[zv] = 0;

where x is binary. Unless z is binary, E[xjz] cannot be a linear function. Suppose we run a Probit
regression in the �rst stage and get bx = �(b0 + b1z).
(i) Show that if E[xjz] = � (0 + 1z), then b� � �b�0; b�1�0 based on regressing y on 1; bx is consis-

tent.

(ii) Show that if E[xjz] 6= �(0 + 1z), then b� based on regressing y on 1; bx is not consistent.
(iii) Show that if E[xjz] = � (0 + 1z), plim

�b�� is the same as the plim of the IV estimator using
(1; bx) as the instrumental variables, but if E[xjz] 6= �(0 + 1z), they are generally di¤erent.

(iv) Show that the IV estimator using (1; ex) as the instrumental variables is consistent, where ex is
the linear projection of x on (1; z).

(Hint: if E[xjz] = � (0 + 1z), b = (b0; b1)0 is consistent; otherwise, it is inconsistent.)
6 Interpretation of the IV Estimator

In this section, we intend to answer two questions: (i) How to interpret the IV estimator (and the

2SLS estimator) in the projection language of Chapter 2? (ii) What is the IV estimator estimating?
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Figure 5: Projection Interpretation of the IV Estimator

6.1 Geometric Interpretation of the IV Estimator

Figure 5 illustrates the geometric meaning of the IV estimator. For simplicity, we assume k = k2 = 1

and l = l2 = 1; also, we discuss the population version of the IV estimator instead of the sample

version and denote plim
�b�IV � as �IV . In this simple case, x�IV is the projection of y onto

span(x) along span?(z); this can be easily seen from x�IV = xE[zx]
�1E[zy] � Px?z(y) (compare

to PX?Z(y) in Section 4.1 of Chapter 2). Since z ? u, this is also the projection of y onto span(x)
along u. In the �gure, Px?z(y) is very di¤erent from the orthogonal projection of y onto span(x)

- Px(y) � xE[x2]�1E[xy], because z is di¤erent from x (otherwise, E[zu] 6= 0 since E[xu] > 0 in
the �gure). On the other hand, z cannot be orthogonal to x in the �gure (which corresponds to

the rank condition); otherwise, Px?z(y) is not well de�ned. So z must be between x and x?, just

as shown in the �gure.

If there are more than one instruments, or l > 1, then the 2SLS estimator �rst orthogonally

projects x onto span(z) to get bx in the �gure, and then projects y onto span(x) along span?(bx).
Now, span(z) determines the direction of bx. Also, y in the �gure should be replaced by Px;bx(y) by
noting that Px?bx(y) = xE[bxx]�1E[bxy] = xE[bxx]�1E[bxPx;bx(y)], where Px;bx(y) is the projection of
y on span (x; bx).
6.2 What is the IV Estimator Estimating? (*)

What is the IV estimator estimating? This is an interesting question. To be speci�c, consider the

example of Angrist and Krueger (1991). In this example, z is a dummy variable equal to 0 if born

in the �rst quarter of the year and 1 otherwise, x = S is also a dummy indicating high school
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graduates versus nongraduates, and y is the log weekly wage. Since z is dummy, the IV estimator

is the Wald estimator. To acknowledge the dependence of y on S, we use yj to denote the log

weekly wage with jth level of schooling, j = 0; 1, and to acknowledge the dependence of S on z, we

use Si to denote the schooling level when z = i, i = 0; 1.

Now, S = z � S1 + (1� z) � S0, and y = y0 + (y1 � y0)S. The numerator of (26)

E [yjz = 1]� E [yjz = 0]
= E [y0 + (y1 � y0)S1jz = 1]� E [y0 + (y1 � y0)S0jz = 0]
= E [y0 + (y1 � y0)S1]� E [y0 + (y1 � y0)S0]
= E [(y1 � y0) � (S1 � S0)]

where the second equality is from the exclusion restriction which requires that z a¤ects y only

through S, e.g., the independence of z with (y0; y1; S0; S1) can guarantee this. Using the more

familiar notations, we write the system as

y = �0 + �1S + u

S = 0 + 1z + v;

where yj = � + j � �1+ u, and Si = 0+ i � 1+ v. If z is independent of (u; v), the second equality
follows.

We classify the possibility of S1 and S0 in the following table.

S0

0 1

S1
0

y0 � y0 = 0
Never-taker

y0 � y1 = � (y1 � y0)
De�er

1
y1 � y0
Complier

y1 � y1 = 0
Always-taker

Table: Causal E¤ect of z on y, yS1 � yS0 Classi�ed by S0 and S1

The name "complier" in the table is because this group of individuals always comply with their

assignment z; other names can be similarly understood. S1 � S0 could be �1; 0; or 1, where 0
indicates those whose schooling status is unchanged, and 1 and �1 could be similarly understood.
Therefore,

E [(y1 � y0) � (S1 � S0)]
= E [(y1 � y0) jS1 � S0 = 1]P (S1 � S0 = 1) + E [(y1 � y0) jS1 � S0 = �1]P (S1 � S0 = �1) :

If for everyone, we always have S1�S0 = 1 or 0, that is, compulsory attendance laws cannot reduce
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schooling, then

E [(y1 � y0) � (S1 � S0)] = E [(y1 � y0) jS1 � S0 = 1]P (S1 � S0 = 1) :

In the table, we exclude the possibility of de�ers. This is the monotonicity assumption in Imbens

and Angrist (1994).6 The denominator of (26)

E [Sjz = 1]� E [Sjz = 0] = E [S1 � S0] = P (S1 � S0 = 1) ;

so we have b�1 p�! E [(y1 � y0) jS1 � S0 = 1] :

E [(y1 � y0) jS1 � S0 = 1] is called the local average treatment e¤ect in Imbens and Angrist (1994),
that is, the average treatment e¤ect for those individuals whose schooling decision is a¤ected by the

law. This set of individuals is only implicitly de�ned and cannot be observed. b�1 is called the local
average treatment e¤ect estimator (LATE). For di¤erent z, this set of individuals is di¤erent,
so di¤erent from the usual estimators (such as the LSE) whose interpretations are invariant, the

interpretation of the IV estimator depends on the choice of instruments.

When S takes J > 2 levels, Angrist and Imbens (1995) show that

b�1 p�!
JX
j=1

!j � E [yi � yj�1jS1 � j > S0] � �

where !j =
P (S1�j>S0)PJ
j=1 P (S1�j>S0)

. That is, �1 is a weighted average of per-unit treatment e¤ect. For

the case with continuous S, see Angrist et al. (2000).

7 LIML (*)

Simultaneous equations models can be estimated by the MLE, which is called the full-information
maximum likelihood (FIML) estimator. Sometimes, we are only interested in the parameters
of a single equation. The corresponding MLE is called the limited-information maximum
likelihood (LIML) estimator. This estimator is proposed by Anderson and Rubin (1949, 1950),
and is the ML counterpart of the 2SLS estimator. The LIML estimator predates the 2SLS estimator

and is asymptotically equivalent to the 2SLS estimator given homoskedastic errors. The LIML

estimator is less e¢ cient than the FIML estimator, but more robust (invariant to the normalization

used in a simultaneous equations system). This section is based on Section 8.6 of Hayashi (2000).

If only one-equation is of interest, we come back to the setup of Section 2, 3 and 4. The notations

6Balke and Pearl (1997) refer to it as the "no-de�ance" assumption, and Heckman and Vytlacil (2005) call it the
uniformity assumption because all individuals respond to z in the same direction.
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there can be applied in this case. De�ne

B
((k2+1)�(k2+1))

=

 
1 0

��2 Ik2

!
; �
((k2+1)�l)

=

 
�1 �12

0 �22

!
1 k2

k1

l2
;

� = (�1;�2;�12;�22) , yi =
�
yi;x

0
2i

�0
; ei =

 
ui

v2i

!
;

where yi collects endogenous variables. If eijzi � N (0;�), then the average log-likelihood

`n (�;�) = �
k2 + 1

2
log (2�)� 1

2
log (j�j)� 1

2n

nX
i=1

�
B0yi � �0zi

�0
��1

�
B0yi � �0zi

�
;

where j�j is the determinant of �, and note that the Jacobian of the transformation from yi to ei
is B whose determinant is 1. The average log likelihood function concentrated with respect to the

parameter �;�1;�12;�22 (see the technical appendix) is

`n (�2) = �
k2 + 1

2
log (2�)� 1

2
log � (�2)�

1

2
log
��Y0MZY

�� ;
where

� (�2) =
 0Y0M1Y

 0Y0MZY
=

�ey � eX2�2�0 �ey � eX2�2��ey � eX2�2�0MeZ2
�ey � eX2�2� (27)

with = (1;��02)0, Y= [y;X2], M1 = In � Z1(Z01Z1)�1Z01 and for any random matrix A, eA =

M1A. Maximizing `n (�2) is equivalent to minimizing � (�2). Because �2 can be obtained in this

way, LIML estimates are sometimes referred to as least variance ratio estimates. First of all,b� � �
�b�2� � 1, since span(Z1) � span(Z) and the numerator of � (�2) cannot be smaller than

the denominator for any possible . In fact, for any equation that is overidenti�ed, b� will always
be greater than 1 in �nite samples. For an equation that is just identi�ed, b� will be exactly equal
to 1 because the number of free parameters to be estimated is then just equal to k, the rank of Z.

Thus, in this case, it is possible to choose  so that the numerator and denominator of (27) are

equal.

Thanks to the special form of B and no exclusion restrictions in the endogenous variable re-

gression, there is a closed-form solution to the LIML estimator (see the technical appendix):�b�01; b�02�0 = �X0 (In � b�MZ)X
��1

X0 (In � b�MZ)y; (28)

where b� is the smallest characteristic root ofW1W
�1 with

W1
((k2+1)�(k2+1))

= Y0M1Y; W
((k2+1)�(k2+1))

= Y0MZY;
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or the smallest root of the determinantal equation jW1 � �Wj = 0. The covariance matrix for the
LIML estimator b� can be estimated by

b�2 �X0 (In � b�M)X��1 ;
where b�2 = n�1

�
y �X0b��0 �y �X0b��. The likelihood ratio statistic for testing overidentifying

restrictions reduces to

LR = n log b�;
which converges to �2l�k. When l = k, b� = 1 and LR = 0 as expected. This test statistic was �rst
proposed by Anderson and Rubin (1950).

The LIML estimator (28) is a K-class estimator; see Theil (1961) and Nagar (1959). Inspec-
tion of the 2SLS formula (22) shows that the 2SLS estimator is a K-class estimator with b� = 1,

and the OLS estimator is a K-class estimator with b� = 0. It follows that the LIML and 2SLS

are numerically the same when the equation is just identi�ed. When the errors are normally dis-

tributed, the 2SLS estimator has the p-th moment when p � l � k, that is, the number of �nite
moments for 2SLS equals the number of overidentifying restrictions; see Mariano and Sawa (1972),

Sawa (1969) and also Richardson (1968) and Kinal (1980). This implies that 2SLS does not even

have a mean if the equation is just identi�ed. On the other hand, the LIML estimator has no �nite

moments; see Mariano (1982) and Phillips (1983). Nevertheless, Anderson et al. (1982) present

analytical results that show that LIML approaches its asymptotic normal distribution much more

rapidly than 2SLS. They also show that the LIML has a less median bias than the 2SLS estimator.

Sargan (1958) reports that the bias of the 2SLS is of the order of the inverse of the minimum

population canonical correlation between X2 and Z2.7 Hillier (1990) criticizes the 2SLS estimator

by arguing that the object that is identi�ed is the direction (1;��0)0 but not its magnitude. He
then shows that the 2SLS estimator of direction is distorted by its dependence on normalization of

the parameter. On the other hand, the LIML is less sensitive to the normalization and is a better

estimator of direction. Bekker (1994) presents small-sample results for LIML and a generalization

of LIML. Hahn and Hausman (2002) justify the use of the LIML estimator in some cases with weak

instruments.

There are many other K-class estimators. For example, Sawa (1973) has suggested a way of

modifying the 2SLS estimator to reduce bias, and Fuller (1977) and Morimune (1978, 1983) have

suggested modi�ed versions of the LIML estimator. Fuller�s estimator, which is the simplest of

these, uses b� = b�LIML � �=(n � l) with � being a �xed number. One good choice is � = 1, since
it yields estimates that are approximately unbiased. In contract to the LIML estimator, which has

no �nite moments, Fuller�s modi�ed estimator has all moments �nite provided the sample size is

large enough.

It has been shown that all members of the K-class for which K converges to 1 at a rate faster

than n�1=2 have the same asymptotic distribution as the 2SLS estimator. These are largely of

7He also gave a minimax instrumental-variable interpretation to the original LIML estimator. For a minimum
distance interpretation of the LIML estimator, see Goldberger (1971).
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theoretical interest, given the pervasive use of 2SLS or OLS. The large sample properties of all K-

class estimators are the same, but the �nite sample properties are possibly very di¤erent. Mariano

(1982) discusses a number of analytical results and provides some guidance as to when LIML is

likely to perform better than 2SLS. He suggests some evidence favors LIML when the sample size

is not large while the number of overidentifying restrictions is. However, much depends on the

particular model and data set.

LIML is rarely used as it is more di¢ cult to implement and harder to explain than 2SLS.

Nevertheless, Pagan (1979) shows that the LIML estimator can be computed by treating the system

of equations as a seemingly unrelated regressions (SUR) models, ignoring both the constraints
on the reduced form and the correlation between x2i and ui, and using the iterative GLS method.

Exercise 17 (Empirical) The data �le card.dat is taken from David Card "Using Geographic

Variation in College Proximity to Estimate the Return to Schooling" in Aspects of Labour Market

Behavior (1995). There are 2215 observations with 29 variables, listed in card.pdf. We want to

estimate a wage equation

log(Wage) = �0 + �1Educ+ �2Exper + �2Exper
2 + �4South+ �5Black + u;

where Educ = Education (Years), Exper = Experience (Years), and South and Black are regional

and racial dummy variables.

(a) Estimate the model by OLS. Report estimates and standard errors.

(b) Now treat Education as endogenous, and the remaining variables as exogenous. Estimate the
model by 2SLS, using the instrument near4, a dummy indicating that the observation lives

near a 4-year college. Report estimates and standard errors.

(c) Re-estimate by 2SLS (report estimates and standard errors) adding three additional instru-
ments: near2 (a dummy indicating that the observation lives near a 2-year college), fatheduc

(the education, in years, of the father) and motheduc (the education, in years, of the mother).

Technical Appendix: Concentrated Likelihood in the LIML

The derivation here is based on Section 18.5 of Davidson and MacKinnon (1993). First concentrate

out �. Taking derivative with respect to ��1, we have

@`n (�;�)

@��1
=
1

2
�� 1

2n

nX
i=1

�
B0yi � �0zi

�0 �
B0yi � �0zi

�
;

so b� (�) = 1

n

nX
i=1

�
B0yi � �0zi

�0 �
B0yi � �0zi

�
=
1

n
(YB� Z�)0 (YB� Z�) :
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As a result, the concentrated average log-likelihood is

`n (�) = �k2 + 1
2

(log (2�) + 1)� 1
2
log

���� 1n (YB� Z�)0 (YB� Z�)
����

= �k2 + 1
2

(log (2�) + 1)� 1
2
log

���� 1n �Y � Z�B�1�0 �Y � Z�B�1�
���� ;

where the second equality is due to jBj = 1. Note that

�B�1 =

 
�1 �12

0 �22

! 
1 0

�2 Ik2

!
=

 
�1 + �12�2 �12

�22�2 �22

!
;

which is the (restricted) reduced-from coe¢ cient matrix, the top part corresponds to Z1 and the

bottom part to Z2. Since �1 does not appear in the bottom part, it is clear that for whatever value

of �2, we can �nd values of �1 and �12 such that the top part is equal to anything at all. In other

words, the structural equations do not impose any restrictions on the (unrestricted) reduced-form

coe¢ cients corresponding to Z1. In general, however, they do impose restrictions on the coe¢ cients

corresponding to Z2.

It is obvious that minimizing `n (�) is equivalent to minimizing
����Y � Z�B�1�0 �Y � Z�B�1����.

If there are no restrictions on the coe¢ cients of Z, then the minimizer (corresponding to �B�1)

should be the OLS estimate b� which minimizes
��(Y � Z�)0 (Y � Z�)��. To see why, let e� = b�+A

be another candidate. Then �����Y � Z e��0 �Y � Z e������
=

�����Y � Z b�� ZA�0 �Y � Z b�� ZA�����
=

��(MZY � ZA)0 (MZY � ZA)
��

=
��Y0MZY +A

0Z0ZA
�� :

Because the determinant of the sum of two positive de�nite matrices is always greater than the

determinants of either of those matrix, we can see b� is indeed the minimizer. Since there are no

restrictions on the rows of � that corresponds to Z1, we can use OLS to estimate those parame-

ters, and then concentrate them out of the determinant. When we do this, the determinant of��(YB� Z�)0 (YB� Z�)��, which equals that of ����Y � Z�B�1�0 �Y � Z�B�1����, becomes
��(YB� Z�)0M1 (YB� Z�)

�� ;
which can be rewritten as������

� eY�0 �eY� �eY�0 �eX2 � eZ2�22��eX2 � eZ2�22�0 �eY� �eX2 � eZ2�22�0 �eX2 � eZ2�22�
������ (29)
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This determinant depends only on  and �22; we further concentrate out �22. Using the result

that for any matrix A and B, ����� A0A A0B

B0A B0B

����� = ��A0A�� ��B0MAB
�� ; (30)

we have our target (29) equal to

�eY�0 �eY� ����� eX2 � eZ2�22�0Mv

�eX2 � eZ2�22����� ; (31)

where v = eY, and note that �eY�0 �eY� is scalar so its determinant is itself. The parameters
�22 appears only in the second factor of (31). This factor is the determinant of the matrix of

sums of squares and cross-products of the residuals from regressions ofMv
eX2 onMv

eZ2. From the

discussion above, the minimizer (corresponding to �22) should be the OLS estimate, and the matrix

of residuals isM
Mv

eZ2Mv
eX2 =Mv;eZ2 eX2. Consequently, the second factor of (31), minimized with

respect to �22, is ��� eX02Mv;eZ2 eX2��� : (32)

The fact that v and eZ2 appear in a symmetrical fashion in (32) can be exploited in order to make
(32) depend on  only through a scalar factor. Consider the determinant����� v0MeZ2v v0MeZ2 eX2eX02MeZ2v eX02MeZ2 eX2

����� : (33)

By use of (30), this determinant can be factorized just as (29) was. We obtain�
v0MeZ2v

� ��� eX02Mv;eZ2 eX2��� :
Using the facts that M1MeZ2 =MZ and that v =M1Y, (33) can be rewritten as�����  0Y0MZY  0Y0MZX2

X02MZY X02MZX2

����� = ��B0Y0MZYB
�� = ��Y0MZY

�� ; (34)

where the �rst equality is from the de�nition of B, and the second equality is from the fact that

jBj = 1. It implies that (34) does not depend on B at all.

In summary, minimizing the concentrated log-likelihood is equivalent to minimizing�eY�0 �eY� jY0MZYj
v0MeZ2v =

 0Y0M1Y

 0Y0MZY

��Y0MZY
�� = � (�2) ��Y0MZY

�� ;
or minimizing � (�2) since jY0MZYj is free of parameters. Di¤erentiating � (�2) with respect to
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, we have the FOCs:

2Y0M1Y
�
 0Y0MZY

�
� 2Y0MZY

�
 0Y0M1Y

�
= 0:

Dividing both sides by 2 ( 0Y0MZY), we have

Y0M1Y��Y0MZY = 0; (35)

or

(W1 � �W) = 0;

where W1 and W are de�ned in the main text. In other words, b� is the smallest eigenvalue of
W1W

�1, and b is the corresponding eigenvector. To �nd b or b�2, expanding (35) as" 
y0M1y y0M1X2

X02M1y X02M1X2

!
� b� y0MZy y0MZX2

X02MZy X02MZX2

!# 
1

�b�2
!
= 0:

When the rows corresponding to X2 are multiplied out, this becomes

X02 (M1 � b�MZ)y �X02 (M1 � b�MZ)X2b�2 = 0;
which implies b�2 = �X02 (M1 � b�MZ)X2

��1
X02 (M1 � b�MZ)y:

Given b�2, b�1 can be obtained by regressing y �X2b�2 on X1. Combining the formulas for b�1 andb�2, we can show (28).
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